Federated Learning Solutions Market Research, 2032
The global federated learning solutions market size was valued at $125.9 million in 2023, and is projected to reach $301.9 million by 2032, growing at a CAGR of 10.2% from 2024 to 2032. Federated learning is a machine learning method that has an algorithm across several decentralized edge devices or servers carrying local data samples. This method is in contrast with the traditional centralized machine learning techniques where all the local datasets are stored on a single server. In addition, this technique makes sure that the local data samples are identically dispersed in the server.
Federated learning is used to construct models on consumer behavior from the information pool of smartphones without disclosing personal data such as for next-word prediction, face detection, and voice recognition. Federated learning allows multiple vendors to build a common, machine learning model without sharing data, thus allowing to address critical issues such as data privacy & security, data access rights, and the ability to access diverse data.
Key Takeaways
The federated learning solutions industry study covers 20 countries. The research includes a segment analysis of each country in terms of value ($Million) for the projected period 2024-2032.
More than 1,500 product literature, industry releases, annual reports, and other such documents of major federated learning solutions industry participants along with authentic industry journals, trade associations' releases, and government websites have been reviewed for generating high-value industry insights.
The study integrated high-quality data, professional opinions and analysis, and critical independent perspectives. The research approach is intended to provide a balanced view of global markets and assist stakeholders in making educated decisions to achieve their most ambitious growth objectives.
Key market dynamics
The global federated learning solutions market has grown due to several factors such as rise in remote learning trend, increase in demand for low-cost convenient learning systems, and surge in the use of AI & machine learning solutions. However, the lack of face-to-face interactions in the learning solutions systems acts as a restraint for the federated learning solutions market. In addition, the emergence of several trends such as micro-learning, gamification, adaptive learning, and mobile learning will provide ample opportunities for the market's development during the forecast period.
Applications of Federated Learning
According to MDPI, in 2021, federated learning (FL) is a promising distributed ML approach with the advantage of privacy preservation. It allows multiple nodes to build a joint learning model without exchanging their data. That is how it addresses critical problems such as data access rights, privacy, security, and access to heterogeneous data types. Thus, it is applicable in a variety of fields such as autonomous vehicles, traffic prediction, and monitoring, healthcare, telecom, IoT, pharmaceutics, industrial management, industrial IoT, and healthcare and medical AI. The proportion of the trend to use FL in different fields is depicted in the figure below. These factors are further expected to fuel the growth of the global market.
FIGURE 1: Applications of Federated Learning (%)
Market Segmentation
The federated learning solutions market is segmented into component, application, industry vertical, and region. By component, it is bifurcated into solution and services. By application, it is divided into drug discovery, data privacy & security management, risk management, shopping experience personalization, industrial internet of things, online visual object detection, and others. By industry vertical, it is classified into BFSI, healthcare & life sciences, retail & e-commerce, manufacturing, energy & utilities, and others. Region-wise, the market is analyzed across North America, Europe, Asia-Pacific, Latin America, and the Middle East & Africa.
Regional/Country Market Outlook
The global federated learning solutions market has experienced substantial growth, with North America playing a pivotal role in this expansion. North America leads the market, propelled by robust technological infrastructure, significant investments in smart technologies, and stringent safety regulations that encourage the integration of advanced learning solutions. Europe follows closely, with countries such as Germany and the UK at the forefront, leveraging federated learning solutions. In the Asia-Pacific region, rapid digitalization and increasing awareness of smart learning solutions are driving the adoption of AI and IoT technology solutions, particularly in China and Japan, where government initiatives support technological advancements. For instance, in February 2022, Indian tech startups introduced the Union Budget 2022, focused on setting up groundwork with the Higher Education Commission of India and the National Education Policy for the penetration of digital education across the country and promoting upskilling.
Industry Trends
In June 2022, the U.S. and UK Governments collaborated to drive the Privacy-enhancing technologies (PETs) that could play a transformative role in addressing these financial crimes. PETs include maturing technologies, such as federated learning, which allows machine learning models to be trained on high-quality datasets collaboratively among organizations, without the data leaving safe environments.
Competitive Landscape
The major players operating in the federated learning solutions market share include Cloudera Inc, Intellegens Ltd., DataFleets Ltd, Nvidia Corporation, Owkin Inc., International Business Machines Corporation, Edge Delta Inc., Enveil Inc., Microsoft Corporation, and Alphabet Inc.
Recent Key Strategies and Developments
In July 2023, FedML raised $11.5 million in funding to expand development and adoption for its distributed MLOps platform, which helps companies efficiently train and serve custom generative AI and large language models using proprietary data, while reducing costs through decentralized GPU cloud resources shared by the community.
In July 2021, HUB Security Ltd. partnered with Scaleout. The partnership is expected to focus on applications where the data for AI is distributed across multiple silos and performance requires physical proximity to the data sources.
Key Sources Referred
ESCAP E-learning software Platform
Government of India
Scope E-learning software
Online Learning Consortium (OLC)
Key Benefits for Stakeholders
This report provides a quantitative analysis of the federated learning solutions market forecast segments, current trends, estimations, and dynamics of the federated learning solutions market analysis from 2023 to 2032 to identify the prevailing federated learning solutions market opportunities.
Market research is offered along with information related to key drivers, restraints, and opportunities.
Porter's five forces analysis highlights the potency of buyers and suppliers to enable stakeholders to make profit-oriented business decisions and strengthen their supplier-buyer network.
In-depth analysis of the federated learning solutions market segmentation assists to determine the prevailing market opportunities.
Major countries in each region are mapped according to their revenue contribution to the global federated learning solutions market Statistics.
Market player positioning facilitates benchmarking and provides a clear understanding of the present position of the market players.
The report includes the analysis of the regional and global federated learning solutions market trends, key players, market segments, application areas, and market growth strategies.
Federated Learning Solutions Market Report Highlights
Aspects | Details |
Market Size By 2032 | USD 301.9 Million |
Growth Rate | CAGR of 10.2% |
Forecast period | 2024 - 2032 |
Report Pages | 350 |
By Component |
|
By Application |
|
By Industry Vertical |
|
By Region |
|
Key Market Players | Microsoft Corporation, Intellegens Ltd., DataFleets Ltd, Alphabet Inc., Edge Delta Inc., Cloudera Inc, International Business Machines Corporation, Nvidia Corporation, Enveil Inc., Owkin Inc. |
Federated learning is being increasingly adopted in the healthcare sector to enable collaboration between institutions without compromising sensitive patient data.
The industrial internet of things is the leading application of the Federated Learning Solutions Market.
North America was the largest regional market for Federated Learning Solutions in 2023.
$301.9 million is the estimated industry size of Federated Learning Solutions in 2032.
Cloudera Inc., Intellegens Ltd., DataFleets Ltd, Nvidia Corporation, Owkin Inc., International Business Machines Corporation, Edge Delta Inc., Enveil Inc., Microsoft Corporation, and Alphabet Inc. are the top companies to hold the market share in Federated Learning Solutions.
Loading Table Of Content...