Report Code : A17223
According to Aarti Goswami, Research Analyst, BFSI at Allied Market Research, “Machine learning is a leading fraud detection technology that uses data and predictive analysis for identifying and preventing frauds. Through emerging data analytics innovations and analysis of internet-based personalized data, banks are focused on developing ML-based products to trace habits of customers. Various large banks are investing in such ML start-ups, thus creating several lucrative opportunities for the machine learning in banking market trends.”
Vineet Kumar - Manager
BFSI at Allied Market Research
According to a new report published by Allied Market Research, titled, “Machine Learning in Banking Market," The machine learning in banking market size was valued at $1.33 billion in 2021, and is estimated to reach $21.27 billion by 2031, growing at a CAGR of 32.2% from 2022 to 2031.
In recent years, machine learning has been adopted by various banks for strategic decision making, customer insights, and understanding consumer purchasing behavior, and improving the digital transaction experience. For instance, in 2019, Government of India announced the rapid digitalization of the banking sector as part of the Digital India initiative that is expected to stimulate financial inclusion. RBI further promoted its policy of Secure and Informed Digital Banking. Moreover, Allied Digital Services Ltd., a publicly-traded global IT solutions, services, and master systems integration company, officially announced the launch of its new FinTech product FinoAllied, which is an ML-powered conversational banking platform, that comes with built-in banking services and transactions fully ready to be offered to the customers through various digital channels of the banks. Allied Digital sources claim that FinoAllied could be helpful for small and mid-size banks that are struggling in their digital transformation.
On the basis of application, the credit scoring segment dominated the market in 2021. This is attributed to the fact that machine learning in financial industry can expand a lender’s customer base to cover the so-called credit invisible people with thin or no credit histories and those whose credit scores are not accurate reflections of their risk. Therefore, these are the major growth factors for the machine learning in banking market for credit scoring.
Region wise, North America attained the highest growth in 2021. This is owing to growing pressure in managing risk along with increasing governance and regulatory requirements to improve personalized banking and to provide better customer service. In addition, rapid digitization in financial firms all across the region and adoption of machine learning among banks to monitor data for unusual transactions to detect and prevent fraudulent activities and to keep end users accounts secure drive the machine learning in banking market growth.
The COVID-19 pandemic had resulted in a positive impact on the machine learning in banking sector since most of the banks and other financial institutions readily adopted technology during the pandemic. Machine learning was one of the most widely adopted technology by banks worldwide during the pandemic. Therefore, the COVID-19 pandemic had a positive impact on the machine learning in banking market trends.
Key findings of the study
The key players profiled in the machine learning in banking market analysis are Affirm, Inc., Amazon Web Services, Inc., BigML, Inc., Cisco Systems, Inc., FICO, Google LLC, Mindtree Ltd., Microsoft Corporation, SAP SE, and SPD-Group. These players have adopted various strategies such as product development to increase their market penetration and strengthen their position in machine learning in banking industry.
Talk to David (Europe)
Talk to Sona Padman (Americas)
5933 NE Win Sivers Drive #205,
Portland, OR 97220 United States
Toll Free: +1-800-792-5285
UK: +44-845-528-1300
Hong Kong: +852-301-84916
India (Pune): +91 2066346060
Fax: +1(855) 550-5975
Allied Market Research
Contact Toll Free: +1-800-792-5285
Drop us an email at
media@alliedmarketresearch.com
Machine Learning in Banking Market by Component (Solution, Service), by Enterprise Size (Large Enterprises, Small and Medium-sized Enterprises (SMEs)), by Application (Credit Scoring, Risk Management Compliance and Security, Payments and Transactions, Customer Service, Others): Global Opportunity Analysis and Industry Forecast, 2021-2031
To ensure high-level data integrity, accurate analysis, and impeccable forecasts
For complete satisfaction
On-demand customization of scope of the report to exactly meet your needs
Targeted market view to provide pertinent information and save time of readers
Buy Full Version
"Machine Learning in Banking Market"
Purchase Enquiry
Get insights on topics that are crucial for your business. Stay abreast of your interest areas.
Get Industry Data AlertsTo ensure high-level data integrity, accurate analysis, and impeccable forecasts
For complete satisfaction
On-demand customization of the scope of the report to exactly meet your needs
Targeted market view to provide pertinent information and save the time of readers