Extract, Transform, Load (ETL) Market Statistics: 2027
Extract, transform, and load (ETL) is a process through which data is extracted from a source and then moved to a central host. The process runs in parallel to save time. For example, while data is being extracted, transformation would also start working at the same time on the data being received and prepare it for loading and then loading process can begin working on the prepared data, rather than waiting for the entire extraction process to complete.
However, the ETL process is not simple, it requires inputs collected from multiple stakeholders including developers, analyst, testers, and top executives. It has multiple benefits such as maintaining large historical data and helping in answering complex business questions. It also helps to compare sample data between source and a target system.
COVID-19 scenario Analysis:
The impact of Covid-19 has drawn international attention to the role technology can play in understanding its spread, impact, and mitigating steps that can be taken to avoid infection from the disease.
Though all offices across the globe are shut down, owing to the COVID-19 pandemic, every industry has shifted to work from home concept, which has led to increase in adoption of cloud technology. There is not much negative impact of COVID-19 on data generation and as the generated data is unstructured and arrives in tremendous volume, variety and velocity from a variety of heterogeneous and inconsistent sources generates the need for adoption of extract transform load (ETL) processes.
ETL processes structures data in a way that it enables meaningful modelling and analysis. Unstructured data can be used for various organizational decisions. Unstructured big data is extracted, transformed, and loaded to make better decision making for analytics to enhance productivity.
In addition, the pandemic is expected to lead to growth in adoption of extract, transform, and load software for drug therapies, which would be specifically optimized for individuals. A personalized approach to healthcare enables rigorous scientific approach not just to eradicate illness but also to optimize wellbeing and happiness of patients, thus creating multiple opportunities for the extract, transform, load market.
Top impacting factors: Market Scenario Analysis, Trends, Drivers and Impact Analysis
Increase in volume of data and big data, high adoption of Internet of Things, and capability of ETL tools to store different types of business information are some of the major key drivers of the extract, transform, load market. In addition, increase in demand for cloud driven technology also positively impacts on growth of the market. However, difficult architecture and complex configurations are some of the challenges that need high initial cost investments, which hinders growth of the market. Moreover, growth in the telecom and information technology sector with increased adoption of various technologies is expected to create numerous opportunities for the etl market.
Growth in importance of data in every industry vertical:
Extract, load, and transform is widely used in many organizations such as in the retail industry to view daily sales data or in the healthcare industry to check claims. ETL helps to combine and surface transitional data either from warehouses or other data stores to make a format that can be easily understood by business people. In addition, ETL is also used to migrate data from legacy systems to modern systems with different data formats to consolidate data from business mergers to collect and then join data from external suppliers or partners, hence as organizations see the importance of storing and analysis of data, which drives growth of the extract, transform, load market.
High Cost investment
Configuration and maintenance of these data ware houses require large amount of investments in activities such as configuration of 3 phases of ETL, maintaining increase in data velocity, updating data formats, time cost of adding new connections, time cost of fixing broken connections, and requesting new features, which further increases the cost associated with ETL tools, which hinders growth of the extract, transform, load market. In addition, ETL works in 3 different phases and every phase needs a complete architecture and configuration, which makes the complete process expensive and complex.
Increase in adoption of cloud-based technologies in ETL:
Many organizations are trying to use and develop applications with the help of cloud technology, as cloud-based software transforms and loads data into cloud data warehouse systems such as amazon web services or snowflake computing. As many services are moving, their data warehouse operations from on-premise to cloud demand for cloud based technologies with ETL is expected to accelerate, which creates lucrative opportunities for the etl market.
Key benefits of the report:
- This study presents analytical depiction of the global extract, transform, load market along with the current trends and future estimations to determine the imminent investment pockets.
- The report presents information related to key drivers, restraints, and opportunities along with detailed analysis of the extract, transform, load market share.
- The current market is quantitatively analyzed to highlight the global extract, transform, load market growth scenario.
- Porter’s five forces analysis illustrates the potency of buyers & suppliers in the etl market.
- The report provides detailed extract transform load market extract, load, and transform analysis based on competitive intensity and how the competition will take shape in coming years.
Extract, Transform, Load (ETL) Market Report Highlights
Aspects | Details |
By deployment |
|
By Organization Size |
|
By End-use Industry |
|
By Region |
|
Key Market Players | IBM Infosphere, Microsoft SQL Server Integration Services (SSIS), Talend, Informatica, Pentaho Data Integration (Kettle), Oracle Data Integrator, Oracle Warehouse Builder, SAS Data Integration Studio, Amazon Redshift, SAP Data Services |
Loading Table Of Content...