Hadoop Market Statistics, 2030
The global hadoop market was valued at $35.74 billion in 2020, and is projected to reach $842.25 billion by 2030, registering a CAGR of 37.4% from 2021 to 2030. Hadoop is an open-source framework used to efficiently store and process large datasets ranging in size from gigabytes to petabytes of data. Instead of using one large computer to store and process the data, Hadoop allows clustering multiple computers to analyze massive datasets in parallel more quickly. In addition, Hadoop ecosystem includes many tools and applications to help collect, store, process, analyze, and manage big data.
Cost-effective and fast data processing and large volumes of unstructured data boost the growth of the global Hadoop market. In addition, increase in demand for data analytics positively impacts the growth of the market. However, increase in security concerns regarding Hadoop architecture, distributed computing, and access to data and fragmented data hamper the market growth. On the contrary, partnerships and funding taking place in the Hadoop market and data fusion are expected to offer remunerative opportunities for expansion of the market during the forecast period.
In terms of component, the services segment holds the largest Hadoop market share, owing to increasing venture capital investment in the Hadoop integration and deployment services. However, the software segment is expected to grow at the highest rate during the forecast period, owing to increase in implementation by developers to build real-time applications simplify complex products and helps developers to write Hadoop applications or analyze data stored in Hadoop. Region wise, the Hadoop market share was dominated by North America in 2020, and is expected to retain its position during the forecast period, due to the early adoption of Hadoop and high technological advancement. However, Asia-Pacific is expected to witness significant growth during the forecast period, owing to rise in digitization and increase in data generated by IoT devices.
By Component
Service segment is projected as one of the most lucrative segments.
Segment Review
The global hadoop market is segmented on the basis of component, deployment model, enterprise size, industry vertical, and region. On the basis of component, it is divided into hardware, software, and service. On the basis of deployment type, it is classified into on-premise, cloud, and hybrid. By enterprise size, it is bifurcated into large enterprises and SMEs. By industry vertical, it is segregated into manufacturing, BFSI, retail & consumer goods, IT & telecommunication, healthcare, government & defense, media & entertainment, energy & utility, trade & transportation, and others. Region -wise, it is analyzed across North America, Europe, Asia-Pacific, and LAMEA. The global Hadoop industry is dominated by Amazon Web Services, Inc., Cisco Systems, Inc., Cloudera, Inc., Datameer, Inc., Hitachi Vantara Corporation, Fair Isaac Corporation, MapR Technologies, MarkLogic, Microsoft Corporation, and Teradata Corporation. These players have adopted various strategies to increase their market penetration and strengthen their position in the industry.
Covid-19 Impact Analysis
The Hadoop market size has grown significantly in recent years; but, due to the outbreak of the COVID-19 pandemic, the market is expected to experience a sharp decline in 2020. This is due to governments implementing lockdown in the majority of countries and halt in travel across the globe to prevent the spread of the virus. Following the recovery from the COVID-19 pandemic, the Hadoop industry is expected to grow in the next years. Various firms globally have implemented a work-from-home culture for their staff, resulting in demand for cloud-based Hadoop analytics to manage crucial information, presenting a potential market opportunity. Increase in volume of data generated by different industries and the need to manage this data are the key factors that drive the growth of the market. In addition, governments of numerous countries are adopting Hadoop analytics to update real-time data of the COVID-19 and to make actionable insights from the data. Furthermore, Hadoop helps various researchers, healthcare workers, and scientists to aggregate and synthesize incident data on a regular and global scale.
By Industry Vertical
IT & telecommunication segment is projected as one of the most lucrative segments.
Top Impacting Factors
Cost-effective and Fast Data Processing
Hadoop is an efficient and cost-effective platform for big data because it runs on commodity servers with attached storage, which is a less expensive architecture than a dedicated storage area network (SAN). In addition, Hadoop clusters are also very scalable, which is important because big data programs tend to get bigger as users gain experience and business value from them. Moreover, Hadoop, not only makes it cost effective to work the big data, but also reduces the costs of maintaining an existing enterprise data warehouse. That’s because the essential extract-transport-load (ETL) tasks that are typically performed on the enterprise data warehouses (EDWs) can be offloaded for execution on lower-cost Hadoop clusters. ETL takes a lot of processing cycles, so it is more resource efficient not to execute them on the high-end machines where enterprise data warehouses reside.
Large Volumes of Unstructured Data
The demand for Hadoop expands at a significant rate owing to increase in unstructured data from devices, such as computers, smart phones, traffic cameras, RFID readers, and others. Unstructured data is variable and heterogeneous in nature. The data may be in image, text, video, document, or any other format. In addition, it has the ability to process unstructured data that is more than 80% the global data. For instance, The New York Times articles produced between the years 1851 to 1922 with 11 million pages and 4TB of data, were converted to a Hadoop cluster on Amazon’s AWS, with low cost, using a single employee that did the work in just 24 hours. In addition, it can handle structured data and unstructured data in a data warehouse or relational database, which in turn allows the end user to make more precise decisions that are based on broad data. Thus, boosting the Hadoop market size.
By Region
Asia-Pacific would exhibit the highest CAGR of 39.3% during 2021-2030.
Key Benefits For Stakeholders
- The study provides an in-depth analysis of the global Hadoop market forecast along with current & future trends to explain the imminent investment pockets.
- Information about key drivers, restraints, & opportunities and their impact analysis on global Hadoop market trend is provided in the report.
- The Porter’s five forces analysis illustrates the potency of the buyers and suppliers operating in the industry.
- The quantitative analysis of the market from 2021 to 2030 is provided to determine the hadoop market potential.
Hadoop Market Report Highlights
Aspects | Details |
By Component |
|
By Deployment Model |
|
By Enterprise size |
|
By Industry Vertical |
|
By Region |
|
By Key Market Players |
|
Analyst Review
The widespread use of big data analytics and Hadoop's to deliver cost-effective solutions, is expected to boost the popularity of Hadoop. Furthermore, applications such as data warehouses, business intelligence, analytics, and data integration provide significant opportunities for market expansion. In the present market, the most popular and widely used Hadoop products are HDFS (Hadoop distributed file system) and various add-ons.
Key providers of the market, such as Amazon Web Services, Microsoft Corporation, and Hitachi Vantara Corporation account for a significant share in the market. With the larger requirement for Hadoop, various companies are partnering to increase the Hadoop capabilities. For instance, in December 2020, Datameer partnered with Google Cloud to deliver scalable, secure migration of enterprise data and analytics workloads to the cloud. The partnership is expected to help customers build secure pipelines to Google Cloud and run petabyte-scale analytics across hybrid and multi-cloud data environments. In addition, the partnership is expected to help organizations mature securely and with agility migrate their data workloads to Google Cloud while maintaining business continuity by enabling them to run analytics and machine learning workflows in hybrid and multi-cloud environments.
In addition, with increase in demand for Hadoop services, various companies are expanding their current services to continue with the rise in demand. For instance, in August 2020, Cloudera, the enterprise data cloud company, announced the general availability of Cloudera Data Platform Private Cloud (CDP Private Cloud). CDP Private Cloud extends cloud-native speed, simplicity, and economics for the connected data lifecycle to the data center, enabling IT to respond to business needs faster and deliver rock-solid service levels so people can be more productive with data. In addition, with CDP Private Cloud, IT can now meet the exponential demand for data analytics and machine learning services, with a petabyte-scale hybrid data architecture that can flex to use private and public clouds.
Moreover, market players are expanding their business operations and customers by increasing their acquisition. For instance, in June 2021, Cloudera, the enterprise data cloud company, announced that it has entered into a definitive agreement to be acquired by affiliates of Clayton, Dubilier & Rice (“CD&R”), and KKR in an all cash transaction valued at approximately $5.3 billion. The transaction is expected to result in Cloudera becoming a private company and is expected to close in the second half of 2021. The acquisition will accelerate Cloudera’s long-term path to hybrid cloud leadership for analytics that span the complete data lifecycle - from the Edge to AI.
Loading Table Of Content...